Minggu, 29 Desember 2013

kontrol kinetika dan kontrol termodinamika senyawa organik


KONTROL KINETIKA DAN KONTROL TERMODINAMIKA SENYAWA ORGANIK
Beberapa reaksi kimia mempunyai kemampuan untuk menghasilkan lebih dari satu produk. Jumlah relatif dari produk yang dihasilkan lebih sering tergantung pada kondisi reaksi saat reaksi berlangsung. Perubahan pada jumlah reaktan, waktu, temperatur, dan kondisi yang lain dapat memperngaruhi distribusi pembentukan produk dari reaksi kimia tersebut. Alasannya dapat dimengerti dari dua konsep penting yaitu:
            1. Stabilitas relatif secara termodinamik dari produk yang dihasilkan.
            2. Kecepatan relatif secara kinetik pada saat produk terbentukKontrol termodinamika atau kinetika dalam reaksi kimia dapat menentukan komposisi campuran produk reaksi ketika jalur bersaing mengarah pada produk yang berbeda serta selektivitas dari pengaruh kondisi reaksi tersebut.Kondisi reaksi seperti suhu, tekanan atau pelarut mempengaruhi jalur reaksi; maka dari itu kontrol termodinamik maupun kinetik adalah satu kesatuan dalam dalam suatu reaksi kimia.Kedua kontrol reaksi ini disebut sebagai faktor termodinamika dan faktor kinetika, dapat diuraikan sebagai berikut :
1.Faktor termodinamika (adanya stabilitas realtif dari produk)
Pada suhu tinggi, reaksi berada di bawah kendali termodinamika (ekuilibrium, kondisi reversibel) dan produk utama berada dalam sistem lebih stabil.
2.Faktor kinetik (kecepatan pembentukan produk)
Pada temperatur rendah, reaksi ini di bawah kontrol kinetik (tingkat, kondisi irreversible) dan produk utama adalah produk yang dihasilkan dari reaksi tercepat.
Pengertian kinetik dan termodinamik enolat
            Senyawa karbonil yang memiliki H alfa jika diperlakukan pada kondisi asam, akan
membentuk enol, sedangkan pada kondisi basa membentuk ion enolat. Kondisi asam 3
 termasuk kontrol termodinamik karena mengacu pada kestabilan intermediet (enol).
Sedangkan kondisi basa, termasuk kontrol kinetik karena mengacu pada terbentuknya

ion enolat yang berjalan cepat.

 Termodinamik untuk Reaksi
Untuk terjadinya reaksi secara spontan, energi bebas produk harus lebih rendah daripada energi bebas reaktan, yakni ∆G harus negatif. Reaksi dapat saja berlangsung melalui jalan lain, tapi tentu saja hanya jika energi bebas ditambahkan. Energi bebas terbuat dari dua komponen yaitu entalpi H dan entropi S. Kuantitas tersebut dihubungkan dengan persamaan:
G = ∆HTS
Perubahan entalpi dalam suatu reaksi terutama adalah perbedaan energi ikat (meliputi energi resonansi, tegangan, dan solvasi) antara reaktan dengan produk. Perubahan entalpi dapat dihitung dengan menjumlahkan semua energi ikatan yang putus, kemudian dikurangi dengan jumlah energi semua ikatan yang terbentuk, dan ditambahkan dengan perubahan energi resonansi, tegangan, atau energi solvasi.

 Enolat kinetik vs. termodinamik

Jika keton taksimetris diberikan basa, ia mempunyai potensi membentuk dua enolat yang bersifat regioisomer (dengan menghiraukan geometri enolat). Sebagai contoh:


Enolat yang ter-trisubstitusi dianggap sebagai enolat kinetik, sedangkan enolat yang ter-tetrasubstitusi dianggap sebagai enolat termodinamik. Hidrogen alfa yang terdeprotonasi membentuk enolat kinetik kurang terhalang, sehingga terdeprotonasi lebih cepat. Secara umum, olefin yang ter-tetrasubstitusi lebih stabil daripada olefin yang ter-trisubtitusi oleh karena stabilisasi hiperkonjugasi. Rasio dari regioisomer enolat ini sangat dipengaruhi oleh pilihan basa yang digunakan. Untuk contoh di atas, kontrol kinetik dapat dilakukan dengan menggunakan LDA pada -78 °C, menghasilkan selektivitas 99:1 untuk enolat kinetik:termodinamik, sedangkan kontrol termodinamik dapat dilakukan dengan menggunakan trifenilmetillitium pada suhu kamar, menghasilkan selektivitas 10:90.
Secara umum, enolat kinetik lebih difavoritkan pada kondisi temperatur yang rendah, ikatan logam-oksigen yang relatif ion, dan deprotonasi cepat menggunakan basa yang kuat dan terhalang, yang sedikit berlebihan, sedangkan enolat termodinamik lebih difavoritkan pada kondisi temperatur yang lebih tinggi, ikatan logam-oksigen yang relatif kovalen, dan waktu kesetimbangan yang lebih lama untuk deprotonasi dengan menggunakan basa kuat yang kadarnya sedikit berlebih dari jumlah sub-stoikiometri reaksi. Penggunaan jumlah sub-stoikiometri basa mengijinkan sebagian kecil senyawa karbonil yang tidak terenolisasi menyeimbangkan enolat menjadi regioisomer termodinamik dengan berperan sebagai ulang alik proton (proton shuffle).

pertanyaan
mengapa enolat lebih cepat bereaksi dengan dalam control kinetika dan termodinamika ?

Rabu, 04 Desember 2013

kimia organik fisik






                                            .

Teori asam dan basa Arthenius
Teori
  • Asam adalah zat yang menghasilkan ion hidrogen dalam larutan.
  • Basa adalah zat yang menghasilkan ion hidroksida dalam larutan.
Penetralan terjadi karena ion hidrogen dan ion hidroksida bereaksi untuk menghasilkan air.
http://www.chem-is-try.org/wp-content/migrated_images/kfisika/padding.gifhttp://www.chem-is-try.org/wp-content/migrated_images/kfisika/neutralise1.gif
Pembatasan teori
Asam hidroklorida (asam klorida) dinetralkan oleh kedua larutan natrium hidroksida dan larutan amonia. Pada kedua kasus tersebut, kamu akan memperoleh larutan tak berwarna yang dapat kamu kristalisasi untuk mendapatkan garam berwarna putih – baik itu natrium klorida maupun amonium klorida.
Keduanya jelas merupakan reaksi yang sangat mirip. Persamaan lengkapnya adalah:
http://www.chem-is-try.org/wp-content/migrated_images/kfisika/padding.gifhttp://www.chem-is-try.org/wp-content/migrated_images/kfisika/naohhcl.gif
http://www.chem-is-try.org/wp-content/migrated_images/kfisika/padding.gifhttp://www.chem-is-try.org/wp-content/migrated_images/kfisika/nh3hclaq.gif
Pada kasus natrium hidroksida, ion hidrogen dari asam bereaksi dengan ion hidroksida dari natrium hidroksida – sejalan dengan teori Arrhenius.
Akan tetapi, pada kasus amonia, tidak muncul ion hidroksida sedikit pun!
anda bisa memahami hal ini dengan mengatakan bahwa amonia bereaksi dengan air yang melarutkan amonia tersebut untuk menghasilkan ion amonium dan ion hidroksida:
Reaksi ini merupakan reaksi reversibel, dan pada larutan amonia encer yang khas, sekitar 99% sisa amonia ada dalam bentuk molekul amonia. Meskipun demikian, pada reaksi tersebut terdapat ion hidroksida, dan kita dapat menyelipkan ion hidroksida ini ke dalam teori Arrhenius.
Akan tetapi, reaksi yang sama juga terjadi antara gas amonia dan gas hidrogen klorida.

  • Asam adalah donor proton (ion hidrogen).
  • Basa adalah akseptor proton (ion hidrogen).
Asam menghasilkan ion hidrogen dalam larutan karena asam bereaksi dengan molekul air melalui pemberian sebuah proton pada molekul air.
Ketika gas hidrogen klorida dilarutkan dalam air untuk menghasilkan asam hidroklorida, molekul hidrogen klorida memberikan sebuah proton (sebuah ion hidrogen) ke molekul air. Ikatan koordinasi (kovalen dativ) terbentuk antara satu pasangan mandiri pada oksigen dan hidrogen dari HCl. Menghasilkan ion hidroksonium, H3O+.

http://www.chem-is-try.org/wp-content/migrated_images/kfisika/padding.gif
Ketika asam yang terdapat dalam larutan bereaksi dengan basa, yang berfungsi sebagai asam sebenarnya adalah ion hidroksonium. Sebagai contoh, proton ditransferkan dari ion hidroksonium ke ion hidroksida untuk mendapatkan air.
http://www.chem-is-try.org/wp-content/migrated_images/kfisika/padding.gifhttp://www.chem-is-try.org/wp-content/migrated_images/kfisika/neutralise2.gif
Tampilan elektron terluar, tetapi mengabaikan elektron pada bagian yang lebih dalam:

Adalah sesuatu hal yang penting untuk mengatakan bahwa meskipun anda berbicara tentang ion hidrogen dalam suatu larutan, H+(aq), sebenarnya anda sedang membicarakan ion hidroksonium.
.

Jika amonia berada dalam larutan, amonia menerima sebuah proton dari ion hidroksonium:


Jika reaksi terjadi pada keadaan gas, amonia menerima sebuah proton secara langsung dari hidrogen klorida:

Cara yang lain, amonia berlaku sebagai basa melalui penerimaan sebuah ion hidrogen dari asam.

Teori asam dan basa bronsted lowry
Teori ini memperluas pemahaman anda mengenai asam dan basa.
Teori
  • Asam adalah akseptor pasangan elektron.
  • Basa adalah donor pasangan elektron.
Hubungan antara teori Lewis dan teori Bronsted-Lowry
Basa Lewis
Hal yang paling mudah untuk melihat hubungan tersebut adalah dengan meninjau dengan tepat mengenai basa Bronsted-Lowry ketika basa Bronsted-Lowry menerima ion hidrogen. Tiga basa Bronsted-Lowry dapat kita lihat pada ion hidroksida, amonia dan air, dan ketianya bersifat khas.

Teori Bronsted-Lowry mengatakan bahwa ketiganya berperilaku sebagai basa karena ketiganya bergabung dengan ion hidrogen. Alasan ketiganya bergabung dengan ion hidrigen adalah karena ketiganya memiliki pasangan elektron mandiri – seperti yang dikatakan oleh Teori Lewis. Keduanya konsisten.
Jadi bagaimana Teori Lewis merupakan suatu tambahan pada konsep basa? Saat ini belum – hal ini akan terlihat ketika kita meninjaunya dalam sudut pandang yang berbeda.
Tetapi bagaimana dengan reaksi yang sama mengenai amonia dan air, sebagai contohnya? Pada teori Lewis, tiap reaksi yang menggunakan amonia dan air menggunakan pasangan elektron mandiri-nya untuk membentuk ikatan koordinasi yang akan terhitung selama keduanya berperilaku sebagai basa.
Berikut ini reaksi yang akan anda temukan pada halaman yang berhubungan dengan ikatan koordinasi. Amonia bereaksi dengan BF3 melalui penggunaan pasangan elektron mandiri yang dimilikinya untuk membentuk ikatan koordinasi dengan orbital kosong pada boron.

Sepanjang menyangkut amonia, amonia menjadi sama persis seperti ketika amonia bereaksi dengan sebuah ion hidrogen – amonia menggunakan pasangan elektron mandiri-nya untuk membentuk ikatan koordinasi. Jika anda memperlakukannya sebagai basa pada suatu kasus, hal ini akan berlaku juga pada kasus yang lain.


Asam Lewis
Asam Lewis adalah akseptor pasangan elektron. Pada contoh sebelumnya, BF3 berperilaku sebagai asam Lewis melalui penerimaan pasangan elektron mandiri milik nitrogen. Pada teori Bronsted-Lowry, BF3 tidak sedikitpun disinggung menganai keasamannya.
Inilah tambahan mengenai istilah asam dari pengertian yang sudah biasa digunakan.
Bagaimana dengan reaksi asam basa yang lebih pasti – seperti, sebagai contoh, reaksi antara amonia dan gas hidrogen klorida?

Pastinya adalah penerimaan pasangan elektron mandiri pada nitrogen. Buku teks sering kali menuliskan hal ini seperti jika amonia mendonasikan pasangan elektron mandiri yang dimilikinya pada ion hidrogen – proton sederhana dengan tidak adanya elektron disekelilingnya.
Ini adalah sesuatu hal yang menyesatkan! anda tidak selalu memperoleh ion hidrogen yang bebas pada sistem kimia. Ion hidogen sangat reaktif dan selalu tertarik pada yang lain. Tidak terdapat ion hidrogen yang tidak bergabung dalam HCl.
Klor lebih elektronegatif dibandingkan dengan hidrogen, dan hal ini berarti bahwa hidrogen klorida akan menjadi molekul polar. Elektron pada ikatan hidrogen-klor akan tertarik ke sisi klor, menghasilkan hidrogen yang bersifat sedikit positif dan klor sedikit negatif.
http://www.chem-is-try.org/wp-content/migrated_images/kfisika/hclpolar.gif
Pasangan elektron mandiri pada nitrogen yang terdpat pada molekul amonia tertarik ke arah atom hidrogen yang sedikit positif pada HCl. Setelah pasangan elektron mandiri milik nitrogen mendekat pada atom hidrogen, elektron pada ikatan hidrogen-klor tetap akan menolak ke arah klor.
 permasalahan diatas terdapat bagaimana dengan reaki asam dan basa yang mudah terdefinisikan dengan teori bronsted lowry sebagai contoh reaksi antara amina dan gas hidrogen klorida ?  ?
http://www.chem-is-try.org/wp-content/migrated_images/kfisika/hclpolar.gif Mengapa, HCl adalah suatu asam Lewis?
tolong ya teman dibantu jawaban ya jawaban nya makasi  . . . .
mohon di bantu ya temen-teman  . . . . . . .